A Structural SVM Based Approach for Optimizing Partial AUC
نویسندگان
چکیده
The area under the ROC curve (AUC) is a widely used performance measure in machine learning. Increasingly, however, in several applications, ranging from ranking and biometric screening to medical diagnosis, performance is measured not in terms of the full area under the ROC curve, but instead, in terms of the partial area under the ROC curve between two specified false positive rates. In this paper, we develop a structural SVM framework for directly optimizing the partial AUC between any two false positive rates. Our approach makes use of a cutting plane solver along the lines of the structural SVM based approach for optimizing the full AUC developed by Joachims (2005). Unlike the full AUC, where the combinatorial optimization problem needed to find the most violated constraint in the cutting plane solver can be decomposed easily to yield an efficient algorithm, the corresponding optimization problem in the case of partial AUC is harder to decompose. One of our key technical contributions is an efficient algorithm for solving this combinatorial optimization problem that has the same computational complexity as Joachims’ algorithm for optimizing the usual AUC. This allows us to efficiently optimize the partial AUC in any desired false positive range. We demonstrate the approach on a variety of real-world tasks.
منابع مشابه
: A New Support Vector Method for Optimizing Partial AUC Based on a Tight Convex Upper Bound
The area under the ROC curve (AUC) is a well known performance measure in machine learning and data mining. In an increasing number of applications, however, ranging from ranking applications to a variety of important bioinformatics applications, performance is measured in terms of the partial area under the ROC curve between two specified false positive rates. In recent work, we proposed a str...
متن کاملSupport Vector Algorithms for Optimizing the Partial Area under the ROC Curve
The area under the ROC curve (AUC) is a widely used performance measure in machine learning. Increasingly, however, in several applications, ranging from ranking to biometric screening to medicine, performance is measured not in terms of the full area under the ROC curve but in terms of the partial area under the ROC curve between two false-positive rates. In this letter, we develop support vec...
متن کاملOptimizing Area Under the ROC Curve using Ranking SVMs
Area Under the ROC Curve (AUC), often used for comparing classifiers, is a widely accepted performance measure for ranking instances. Many researches have studied optimization of AUC, usually via optimizing some approximation of a ranking function. Ranking SVMs are among the better performers but their usage in the literature is typically limited to learning a total ranking from partial ranking...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملNoncost Sensitive SVM Training Using Multiple Model Selection
In this paper, we propose a multi-objective optimization framework for SVM hyperparameters tuning. The key idea is to manage a population of classifiers optimizing both False Positive (FP) and True Positive (TP) rates rather than a single classifier optimizing a scalar criterion. Hence, each classifier in teh population optimizes a particular trade-off between the objectives. Within the context...
متن کامل